If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(G)=7G^2-567
We move all terms to the left:
(G)-(7G^2-567)=0
We get rid of parentheses
-7G^2+G+567=0
a = -7; b = 1; c = +567;
Δ = b2-4ac
Δ = 12-4·(-7)·567
Δ = 15877
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$G_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$G_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$G_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{15877}}{2*-7}=\frac{-1-\sqrt{15877}}{-14} $$G_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{15877}}{2*-7}=\frac{-1+\sqrt{15877}}{-14} $
| 23-y=-23 | | 5(x-34)=6x+8 | | 211=x+84 | | -9q+20q+-14q+12q+-6q=-3 | | 9=r/2+7 | | h+9.3=-9.3 | | -3t^2+18t+48=0 | | -22=-3p-7 | | -3=-7+2b | | -5=-13-x | | -5=-v/4-3 | | (3x+21)^4/3+9=90 | | 1=-w/5+6 | | 105=y-25 | | 14q-13q+3q+5q=18 | | 4x+2x-56=4 | | 8=112*z | | 6=d/2+2 | | (2x+12)^2/3-3=13 | | 7m^2+3m=0 | | 16+x-8=4 | | -8x+15x-8=-1 | | -12=-8-t/4 | | 4(x+4)+3=7x+4(x+3) | | 112=0.5(120+z) | | 13x=56+6x | | 13=10+b/5 | | 10-4v=v | | -8=4+4j | | 1/7x-1=3/x | | r-r+3r+2=20 | | 2q+5q-3q=20 |